MARLEY (Model of Argon Reaction Low Energy Yields)
v1.2.0
A Monte Carlo event generator for tens-of-MeV neutrino interactions
|
Implements Brink-Axel strength functions based on the Reference Input Parameter Library's Standard Lorentzian (SLO) Model. More...
#include <StandardLorentzianModel.hh>
Public Member Functions | |
StandardLorentzianModel (int Z, int A) | |
virtual double | strength_function (TransitionType type, int l, double e_gamma) override |
Returns the gamma-ray strength function (MeV –2 \(\ell\)–1) for the requested gamma energy and multipolarity. More... | |
virtual double | transmission_coefficient (TransitionType type, int l, double e_gamma) override |
Returns the gamma-ray transmission coefficient (dimensionless) for the requested gamma energy and multipolarity. More... | |
![]() | |
GammaStrengthFunctionModel (int Z, int A) | |
Additional Inherited Members | |
![]() | |
enum class | TransitionType { electric , magnetic , unphysical } |
Electromagnetic transitions in nuclei may be classified by their multipolarity (electric vs. magnetic multipole radiation) | |
![]() | |
static void | check_multipolarity (int l) |
Check that l > 0 and throw a marley::Error if it is not. More... | |
![]() | |
int | A_ |
Mass number. | |
int | Z_ |
Atomic number. | |
Implements Brink-Axel strength functions based on the Reference Input Parameter Library's Standard Lorentzian (SLO) Model.
Under this model, the gamma-ray strength functions are taken to have a Lorentzian shape with an energy-independent width. If \(E_{\text{X}\ell}\), \(\Gamma_{\text{X}\ell}\), and \(\sigma_{\text{X}\ell}\) are respectively the energy, width, and peak cross section of the \(\text{X}\ell\) giant resonance, then the standard Lorentzian model gamma-ray strength function is given by
\[ f_{\text{X}\ell}(E_\gamma) = \frac{\sigma_{\text{X}\ell}} {(2\ell+1)\pi^2(\hbar c)^2}\left[\frac{\Gamma_{\text{X}\ell}^2 E_\gamma^{3-2\ell}}{\left(E_\gamma^2 - E_{\text{X}\ell}^2\right)^2 + E_\gamma^2\Gamma_{\text{X}\ell}^2}\right] \]
where \(E_\gamma\) is the gamma-ray energy and the type of transition \(\text{X}\) is either electric \(\text{(E)}\) or magnetic \(\text{(M)}\).
The giant resonance parameters \(E_{\text{X}\ell}\), \(\Gamma_{\text{X}\ell}\), and \(\sigma_{\text{X}\ell}\) used by StandardLorentzianModel are the same as those used by default in the TALYS nuclear reaction code, version 1.6. More details about these parameters are given in the table below.
Transition | Parameters | Units | Source |
---|---|---|---|
Electric dipole (E1) | \(E_{\text{E}1} = 31.2A^{-1/3} + 20.6A^{-1/6}\) | MeV | Empirical fit for spherical nuclei from the RIPL-2 handbook, p. 129 |
\(\Gamma_{\text{E}1} = 0.026{E_{\text{E}1}}^{1.91}\) | MeV | ||
\(\displaystyle\sigma_{\text{E}1} = 1.2\left(\frac{120NZ}{\pi A \,\Gamma_{\text{E}1}}\right)\) | mb | ||
Electric quadrupole (E2) | \(E_{\text{E}2} = 63A^{-1/3}\) | MeV | Global fit given by Kopecky in the RIPL-1 handbook, p. 103 |
\(\Gamma_{\text{E}2} = 6.11 - 0.012A\) | MeV | ||
\(\displaystyle\sigma_{\text{E}2} = \frac{0.00014Z^2 E_{\text{E}2}}{A^{1/3}\Gamma_{\text{E}2}}\) | mb | ||
Magnetic dipole (M1) | \(E_{\text{M}1} = 41A^{-1/3}\) | MeV | Global SLO model fit given in the RIPL-2 handbook, p. 132 |
\(\Gamma_{\text{M}1} = 4\) | MeV | ||
\(\displaystyle\sigma_{\text{M}1} = 3\,\pi^2\hbar^2c^2\left[\frac{\left(B_\text{n}^2 - E_{\text{M}1}^2\right)^2 + B_\text{n}^2\, \Gamma_{\text{M}1}^2}{B_\text{n}\,\Gamma_{\text{M}1}^2} \right]\Bigg[\frac{f_{\text{E}1}(B_\text{n})}{0.0588A^{0.878}}\Bigg] \) where \(B_\text{n}\) = 7 MeV and \(f_{\text{E}1}\) is calculated using the E1 parameters above. | mb | ||
Other electric transitions (E3+) | \(E_{\text{E}\ell} = E_{\text{E}2}\) | MeV | Default approximation used by the TALYS nuclear code, version 1.6 |
\(\Gamma_{\text{E}\ell} = \Gamma_{\text{E}2}\) | MeV | ||
\(\displaystyle\sigma_{\text{E}\ell} = (0.0008)^{\ell - 2}\,\sigma_{\text{E}2}\) | mb | ||
Other magnetic transitions (M2+) | \(M_{\text{M}\ell} = M_{\text{M}1}\) | MeV | Default approximation used by the TALYS nuclear code, version 1.6 |
\(\Gamma_{\text{M}\ell} = \Gamma_{\text{M}1}\) | MeV | ||
\(\displaystyle\sigma_{\text{M}\ell} = (0.0008)^{\ell - 1}\,\sigma_{\text{M}1}\) | mb |
marley::StandardLorentzianModel::StandardLorentzianModel | ( | int | Z, |
int | A | ||
) |
|
overridevirtual |
Returns the gamma-ray strength function (MeV –2 \(\ell\)–1) for the requested gamma energy and multipolarity.
type | Electric or magnetic transition |
l | Multipolarity of the transition |
e_gamma | Gamma-ray energy (MeV) |
Implements marley::GammaStrengthFunctionModel.
|
overridevirtual |
Returns the gamma-ray transmission coefficient (dimensionless) for the requested gamma energy and multipolarity.
The gamma-ray transmission coefficient and strength function are related via \(\text{T}_{\text{X}\ell}(\text{E}_\gamma) = 2\pi f_{\text{X}\ell}(\text{E}_\gamma)\text{E}_\gamma^{(2\ell + 1)},\) where X is the type of transition (electric or magnetic), \(\ell\) is the multipolarity, \(\text{T}_{\text{X}\ell}\) is the transmission coefficient, \(f_{\text{X}\ell}\) is the strength function, and \(\text{E}_\gamma\) is the gamma-ray energy.
type | Electric or magnetic transition |
l | Multipolarity of the transition |
e_gamma | Gamma-ray energy (MeV) |
Implements marley::GammaStrengthFunctionModel.